Data Analyst Salaries in New York, NY

What is

Data Analyst

?

Data Analysts interpret and analyze data to provide actionable insights. They use statistical methods and tools to identify trends and support decision-making. Their work informs business strategies and operations.


Data analysts collect and clean data, perform statistical analyses, and create visualizations to communicate findings.

Common titles in 
Data Analyst
  • Data Operations Specialist
  • Data Specialist
  • Data Analyst
  • Senior Data Analyst
Salary range for 
Data Analyst
 (
P3
)
 in 
New York, NY
Interested in salary information for other levels?

Decoding job levels: What is a 

P3

?

Pave’s job levels are denoted by their track (P for Professional, M for Management) and their hierarchical level, as denoted by a number. The higher the number, the more senior the role. There are 10 individual levels, broken down as:

Management: M3, M4, M5 & M6
Professional:
P1, P2, P3, P4, P5 & P6

For a full explanation of Pave’s approach to levels visit our FAQ.

Salary comparison for 
Data Analyst
 (
P3
)
 by city

Want to compare salaries across different cities? Here are the average salaries for Data Analyst in major metros across the United States. Ready to view additional percentiles or Data Analyst levels?

New York, NY
$
130000
$
155000
$
177500
San Francisco, CA
$
139000
$
164800
$
191500
P10
107500
P25
130000
P40
147000
P50
155000
P60
165000
P75
177500
P90
208000
Interested in more salary insights like equity comp or international benchmarks? Book a demo with our team -->
(function (h, o, t, j, a, r) { h.hj = h.hj || function () { (h.hj.q = h.hj.q || []).push(arguments) }; h._hjSettings = { hjid: 2412860, hjsv: 6 }; a = o.getElementsByTagName('head')[0]; r = o.createElement('script'); r.async = 1; r.src = t + h._hjSettings.hjid + j + h._hjSettings.hjsv; a.appendChild(r); })(window, document, 'https://static.hotjar.com/c/hotjar-', '.js?sv='); !function () { var analytics = window.analytics = window.analytics || []; if (!analytics.initialize) if (analytics.invoked) window.console && console.error && console.error("Segment snippet included twice."); else { analytics.invoked = !0; analytics.methods = ["trackSubmit", "trackClick", "trackLink", "trackForm", "pageview", "identify", "reset", "group", "track", "ready", "alias", "debug", "page", "once", "off", "on", "addSourceMiddleware", "addIntegrationMiddleware", "setAnonymousId", "addDestinationMiddleware"]; analytics.factory = function (e) { return function () { var t = Array.prototype.slice.call(arguments); t.unshift(e); analytics.push(t); return analytics } }; for (var e = 0; e < analytics.methods.length; e++) { var key = analytics.methods[e]; analytics[key] = analytics.factory(key) } analytics.load = function (key, e) { var t = document.createElement("script"); t.type = "text/javascript"; t.async = !0; t.src = "https://cdn.segment.com/analytics.js/v1/" + key + "/analytics.min.js"; var n = document.getElementsByTagName("script")[0]; n.parentNode.insertBefore(t, n); analytics._loadOptions = e }; analytics.SNIPPET_VERSION = "4.13.1"; analytics.load("0KGQyN5tZ344emH53H3kxq9XcOO1bKKw"); analytics.page(); } }(); $(document).ready(function () { $('[data-analytics]').on('click', function (e) { var properties var event = $(this).attr('data-analytics') $.each(this.attributes, function (_, attribute) { if (attribute.name.startsWith('data-property-')) { if (!properties) properties = {} var property = attribute.name.split('data-property-')[1] properties[property] = attribute.value } }) analytics.track(event, properties) }) }); var isMobile = /iPhone|iPad|iPod|Android/i.test(navigator.userAgent); if (isMobile) { var dropdown = document.querySelectorAll('.navbar__dropdown'); for (var i = 0; i < dropdown.length; i++) { dropdown[i].addEventListener('click', function(e) { e.stopPropagation(); this.classList.toggle('w--open'); }); } }